
* 

An Ada1 Implementation of the Network Manager for the 
Advanced Information Processing System 

Gail A. Nagle 
Technical Staff 

The Charles Stark Draper Laboratory 
555 Technology Square 

Cambridge, Massachusetts 02 139 
(617) 258-2238 

Introduction 

Tile Advanced Information Processing System (AIPS) is a data processing architecture 
designed to mre: the reliability requirements of space vehicle applications. The Charles Stark 
Draper Laboratory is presently building an AIPS proof-of-concept prototype*. Ada was selected as 
the programming language in which major system services would be implemented. One part of thc 
ALPS architecture is a fault tolerant input/output network which is under the control of a software 
module called thc Network Manager. Ada provides a user with a significant number of options for 
implementing ii given aspect of a design. During the development of the prototype Network 
Manager, some language constructs were found to be particularly well suited for certain types of 
situations. In one case the language did not provide a desired feature. Experience with Ada ah a 
programming language for this application will be described here. 

Background 

UsinP Ada 
Training in Ada was accomplished by a combination of viewing a subset of video taped 

tutorials prese;itc:d by Jean lchbiah, Robert Firth, and John Barnes, participation in an in-house 
course in Ada 1 ,,ins the Chdy  Booch text Sofhvare Engineering h h  and a lot of "learning b!, 
doing". Inifir-illy rhe work in the in-house course and the "learning by doing" were somewhar 
impeded by the absencc of a reliable in-house compiler which supported full Ada. This problcm 
was greatly red!lccd by thc timely arrival of the Digital Equipment Corporation's (DEC) Ad;i 
compiler and daciopmcnt systeiii for the VAX3. 

'I'he iiii:roprocessor used in the prototype system is the Motorola 68010. Since a compilcr 
which handled l u l l  Ada was not available for this machine, i t  was decided that initial design a r i d  
development of programs would be done on the V A X  using the DEC Ada compiler. This St r i l lCS !  
was based in large part on the portability of Ada code and the fact that Ada compilers which targcl 
the 68000 microprocessor were expected to be available well within the development time o f  ~ l i c  

1 Ada i h  ;I regihtcrcd trademark of h e  US. Covernmcnf (Ada Joint Progr;tni Office). 
2'1'1iis work is supprkd  by NASA under JSC contract NAS9-17560. 

3 V A X  is ;I registered trademark or tlic Digital Equipment Corporation. 

I3.3.3.1 
ORlClNAC PAGE tS 
CIF ?OOR QUALlTll 



PrOt?tyF system. Thus progress in designing and programming the various modules could 
contmue ununpeded by artificial constraints in the language. 

mmSvstem 
The AIPS architecture is highly modular. The needs of a specific application can be met 

by selecting components from a set of hardware building blocks and software system services. 
One such building block is a fault and damage tolerant inputloutput network which allows 

a data processing element (typically a Fault Tolerant Processor or FIT) to communicate senally 
with YO devices. The network consists of a number of full duplex links that are connected by 
circuit switched nodes to form a conventional multiplex bus. In steady state, the network 
configuratipn is static and the circuit switched nodes pass information without the delays 
associated with packet switched networks. Since not all pathways are enabled, the network has a 
set of spare links which allow it to be reconfigured in response to a failure. A network may serve 
only one processing element or it may be shared by several processing elements which contend for 
access to the network. In the case of a network dedicated to one processing element, a unique 
network configuration is possible. Such a network may be divided into subnetworks which allow 
an application to conduct simultaneous I/O operations with redundant, parallel devices from each 
subnetwork. Network organization and operation is completely transparent to an application 
running on the system. 

The system service which is responsible for the reliable operation of an YO network is the 
I/O Network Manager. The Network Manager can be run in any processing element connected to 
the physical network to be managed. It performs network initialization, fault detection and 
isolation, reconfiguration to a fault free state, testing for latent faults and status reporting. 

High level design objectives of the network manager software for the prototype include 
transparency to network users, adaptability to dynamically changing system configurations, 
portability within the system, and modularity. Ada language constructs have been found which 
support these design goals. A full Ada version of the design has been compiled and run on a 
VAX 8600 using DEC's Ada compiler. To facilitate testing on the VAX, an Ada simulation of the 
network has also been developed. Installation of the full Ada version on the AIPS Fault Tolerant 
Processor must await the release of a compiler which targets the Motorola 68000. However, a 
modified version of the network manager has been compiled on the VAX using the Telesoft 1.5 
cross compiler and is awaiting system test and integration. 

' 
Implementing the Network Manager in Ada 

Overview 
The number of Network Managers which a system needs depends on the number of 

physical networks in use. This number can vary from system to system and within a system over 
time. However, the number of networks which can be managed from a given processing site is 
bounded by the number of physical 110 interfaces it has. For the prototype system this upper limit 
is six. Furthermore, when a network is partitioned into subnetworks, each partition requires its 
own I/O interface. Thus a given processing element could manage at most six networks and/or 
subnetworks. From the point  of view of the Network Manager, there was no functional distinction 
between the control of a network and the control of a partition . 

The Network Manager is a system service which would be provided on demand of the 
System Manager. The System Manager is another software module which coordinates all other 

B.3.3.2 
OMlNAL P A T  rS 
OT: )OOR QUALlrY 



System Services. The software for an active Network Manager process would consist of two 
major parts: a data store describing the toplogy of the network to be managed and the coded 
algorithms to provide the functions descnbed above. Specific information about the network 
topology (e.g. the number of nodes and links in the network) would not be available until run time. 
Thus two factors motivating the design were the need to be able to start and stop the process on 
demand, and the ability to manage a network topology which is to be determined at run time. 

The fact that several networks could be managed in parallel from a given processor 
required a non-reentrant module to coordinate the starting and stopping of the various manager 
processes. However, each manager was itself an atomic unit, requiring only information about 
the topology to be managed for it to be off and running on its own. Thus the Ada package was 
used to implement the system service of network management on a particular processor. The Ada 
task type was chosen to conduct the lcgic of managing a particular network. Other Ada packages 
were used to coordinate access to irlformation about the various network topologies in the system 
and to encapsulate the data format required for communication with the prototype network nodes. 
Finally, the need for keeping die System Manager apprised of the status of network components 
was met by another tx ' :  type which provided mutually exclusive read/write operations to a 
protected object containing current status information. The relationship among these various 
components is graphically depicted in Figure 1. 

package  IO - NETWORK - MANAGER 
This package provides the capability to manage the fault tolerant network defined by the 

A P S  architecture. A user, in this case the System Manager, can then start or stop management of 
any network in the system. The software for this module would need to be resident in each 
processing site which could in fact manage a network. 

The visible interface to this package is composed of two procedure calls, START and STOP. 
The calling process first designates the dcfinition (Le. the topology) of the network to be managed 
through its interface to the data base package. It then calls the START procedure. When this call 
completes, network management is underway and network status is available. The call to STOP is 
also preceded by a call to the database to designate the network to be stopped. When the call to 
STOP completes, management of the indicated network is terminated and all resources allocated to 
that process are restored to the system. Thus network status is no longer available for that network. 

0 

task type  N E W 0  R K - M M A  G ER 
A task object is created in the body of IO-NEIWORK-MANAGER for each VO network to be 

managed from a particular FTP. If a network is partitioned into a number of subnetworks, each 
subnetwork will be allocated its own manager task. 

The concept of a partitioned network was devised to allow applications to conduct I/O 
operations with redundant, parallel devices resident in separate partitions. Within each subnetwork 
arc a certain number of spare links which allow failures to be repaired intrapartition. While such a 
repair is taking place, communications on the other subnetworks can operate normally. To support 
this feature, management of the 110 networks is not conducted synchronously. Each partition i s  
under thc control of its own task object which performs its functions independently of the other 
su bnetworks. 

Since the number of possible networks which a given processor can manage is known in 
advance and is a relatively small number (currently six), a table of access types to these task objects 
is declared within the package body. The .START and STOP procedures described above have 
access to this table. The task object has three entry calls. Not surprisingly they are a 

B.3.3.3 



start, stop and sfurt status. During the srart rendezvous, the task object makes a local copy of its 
network d e f d t i o n . h r i n g  the start-srarus rendezvous, the network manager task initializes the 
protected status object. This rendezvous is also used to synchronize the two processes which can 
access this shared status object; i.e. the status reader will not be able to read until the status writer 
has written at least once. The task proceeds to "grow" a network. It then enters a loop whereby i t  
will either accept an entry call to srop or will periodically monitor the network for faults. If faults 
are detected during monitoring, fault isolation and reconfiguration logic is activated. An alternate 
approach to the monitor-maintain cycle currently under consideration would provide this activity on 
demand when communication erron are detected in communications conducted on the network for 
application functions. The call to srop causes the process to exit its loop and come to its natural 
end at which time its resources are explicitly deallocated. 

package IO-DATA-BASE, package NOD E-MESSAGE-FORMATTING 
and other &a structure considerutions 

The numbers of various network elements , i.e. nodes, links, YO devices,etc., can vary 
from network to network, but within a given network topology, they are static. The fist  approach 
to the data abstraction process focussed on defining types to contain network topology 
information. The basic connecting unit of a network is a node. The AIPS prototype node has five 
ports. Each port may be connected to another node, a processor interface unit or an 110 device 
interface unit Hence infonnation about the element adjacent to a given port could be contained in 
a discriminated record where the information stored would depend on the type of that element. Five 
such records grouped as an array could make up one field of a larger record containing other 
information about the given node. Finally, a collection of these node records would define a 
topology for a given network. This collection was also housed in a discriminated record where the 
discriminant was the number of nodes (which was given a default value) and the other field was an  
array containing that number of node records. This structure has the additional feature that objects 
of this type could be declared within the network manager task type and would upon allocation of 
the task object have the default value number of nodes. Later this object could be updated to reflect 
the actual number of nodes in the network to be managed. A major wcngth of this approach was 
that of run time reliability. The compiler generated checks will e n u r e  the correct usage of this 
structure, Le. the user cannot access a portion of the structure where values are meaningless. A 
simple array that is large enough to hold data for any case could be misused in this way. However, 
the major drawback to this design was that each object so declared was allocated enough memory 
to hold as many members as the maximal value of the type of the discriminant. 

A second design solved this problem of wasted memory space while retaining the ability to 
dynamically create array objects with the correct number of cells. This design used an access t y p e  
to an unconstrained array type. A variable of this type is declared in the body of the task type. The 
number of nodes and a pointer to an array of node records are passed as rendezvous parameters to 
the activated task. During the rendezvous, the object accessed by the local pointer is allocated with 
as many cells as there are nodes in the network. These cells are assigned values by applying the 
'.all' construct to the local access variable and the rendezvous parameter. The only feature that is 
lost with this solution is the ability to later change the number of cells in the object. Since this 
network topology is constant for the lifetime of the task, this feature is not necessary here. 

'The discriminated record array structure did prove useful in another application. Sincc thc 
network is a shared resource, the various processing elements using the network must contend for- 
access. To reduce the overhead of the contention processing, a set of messages are grouped 
together in what is called a "chain". Messages are sent to nodes in chains. However, the number 
of messages to be sent to the nodes will vary with the reason for the communication. Thus thc 
number of messages in a given chain will vary. For example, when monitoring the netwo:k, all 0 

B.3.3.4 



the nodes are sent messages. When growing the network, only one or  two nodes are sent 
messages. When reconfiguring the network or testing spare links, it may be necessary to send 
messages to several nodes in one chain so as not to leave the network in an inconsistent state for 

other network users before completion of the reconfiguration or test. Thus objects containing node 
messages will vary in length during the life of the task. Rather than create an object for each 
possible length chain, an object of the discriminated record m a y  type was used. In this 
situation,the cost in extra memory is relatively small since each node message is only six bytes 
long and the prototype network may contain at most thirty-two nodes; however, the extra flexibility 
facilitates processing. 

An operation provided by the data base package allowed a significant reduction in the 
memory needed to store topology data as well as the need to ensure that multiple copies of data 
remain consistent. Any FlT connected to a network can manage that network. The definition of the 
network used by a manager is the same regardless of the processing site except for the particular 
nodes (called root nodes) which connect the site to the network. Given the array of node records 
described above and the identity of the FTP, it is possible to derive the root node information. 
Thus network definitions can be stored centrally without regard for local variations which are 
derivable on demand. 

A final Ada feature which proved useful in the data abstraction process was the 
representation clause. The prototype node expects to receive a message containing six bytes of 
data. Each byte in turn contains one or two bit wide fields which the node decodes to obtain its 
control informatiox Rather than having to remember that bits zero and one of byte three control 
whether or not a ?lode is permanently reconfigured or only reconfigured for the next transmission, 
the representation clause allowed a type called CONFIGURATION-LIFETIME to be given two values, 
ONCE-ONLY and P E R M A N E N T ,  with specific base two representations. The representation clause 
further allowed the node message type to be assigned to a specific two bit wide field for the lifetime 
information. Other fields in this record were named and positioned in a similar fashion. The 
programmer need not be concerned with masking and shifting to set up a node message. Code 
using these messages could be written more quickly and more reliably. Furthermore, the code 
becomes self-documenting and therefore easier to test. When the message needs to be stored in a 
general area of memory, unchecked conversion would allow the safe transfer cf the byte organized 
information. This is the case when the message is written to a dual ported memory just prior to 
transmission on the network. Finally, this node dependent information was packaged as a u n i t  
which would shield the rest of the software from any necessary design changes in node hardware 
or protocol. 

Ada currently does not allow a function to accept 'in out' parameters. While this makes 
sense in the context of a mathematical function, in the context of a computer program, T. broadcr 
definition of 'function' can be supported. In this context, a function is a language construct t h a ~  
does something and returns a value as part of its call. In the network manager such a language 
feature would have been a great asset in  conjunction with the short circuit 'and then' construct. 
During growth of a network, a node is subjected to a series of tests before i t  is forma!ly added IO 
h e  network. These tests are sequential i n  nature. I f  a node fails a test in the sequence, thc 
rcmaining tests are doomed to fail and therefore need not be performed. A very elegant w a y  of 
coding this testing sequence was: 

B.3.3.5 



if PASS-TEST-1 
and then PASS-TEST-2 
and then PASS-TEST-3 
and then PASS_TE!j"-4 

then ACTION; 
else OTHER-ACI'ION; 

end if; 

where the PASS-TEST-NS are boolean functions, This code is easy to read and understand; i t  is 
also self-documenting. 

The problem m s e  because each test needed to log error detection information as it was 
discovered. Since a global object was not desired here, other designs were examined. These 
included procedure calls for the tests within nested if then else statements and the calling of these 
procedures from functions declared locally within each subprozram performing the tests. 
However, none of these designs were so simple, straightfonvard or self-documenting as the 
original. It is hoped that this example will provide some additional motivation for a change in this 
restriction. Perhaps another type of subprogram would be the most acceptable solution. 

Conclusions 
From an implementation standpoint, the Ada language provided many features which 

facilitated the data and procedure abstraction process. The language supported a design which was 
dynamically flexible (despite strong typing), modular, and self-documenting. Adequate training of 
programmers requires access to an efficient compiler which supports full  Ada. When the 
performance issues for real time processing are finally addressed by more stringent requirements 
for tasking features and the development of effir.ient run-time environments for embedded systems, 
the full power of the language will be realized. 

0 

B.3 .3 .6  



. 

. package 

IO-NETWOW<_MANAGER 

.START 

f packrgo \ 
IO-D ATA-BAS E 

WRIT€ READ 

\ 
System 
Manager 

1 

4 

task typo 

NETWORK-STATUS 

task type 
N-K-MANAGER 

FIGURE 1 : SOFIWARE COMf'ONEMS FOR MANAGING NETWWKS 

B.3.3.7 


